

Scan to obtain PDF copy

# An experimental study of Catalan consonant alternations

Kevin Liang, Victoria Mateu, and Bruce Hayes University of California, Los Angeles

## (1) Goals for this talk

- Report on two experiments that assess the productivity of four well-studied phonological alternations of Catalan: stem-final /n/- and /r/-deletion, /nt/ simplification, and [3] ~ [tf] alternation.
- Discuss the implications of our experimental results for phonological theory questions relating to the learnability of exceptionality, opacity, and saltation.

#### **BACKGROUND**

# (2) Typical morphological context of the four alternations we examined

- They occur at the right edge of stems.
- We focus on alternations between feminine forms, with suffix [-ə], and unsuffixed masculines.
- Normally, the feminine form preserves the UR intact, with phonological changes occurring in the masculine.

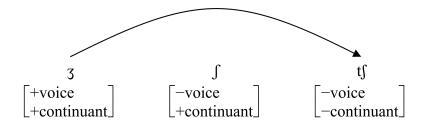
#### (3) /n/-deletion and /r/-deletion

• /n/ and /r/ are deleted in final position, following very similar patterns.

o Deletion of /n/ /san/ ['san- $\[ \]$  'san- $\[ \]$  'healthy fem./masc.' o Deletion of /r/ /dur/ ['dur- $\[ \]$  'dur- $\[ \]$  'hard fem./masc.'

- Both processes are *lexically specific*: applicability to individual items must be memorized, in some way.
- But the exceptionality is *patterned* (Zuraw, 2000): various factors influence deletion rates across the lexicon.
- The patterning is essentially the same for both /n/-deletion and /r/-deletion.
- Here are the patterns we study:

- Penultimately-stressed stems virtually never undergo deletion (e.g., [əw'tɔk.tu.nə] ~ [əw'tɔk.tun] 'autochthonous-fem./masc'; ['prɔs.pə.rə] ~ ['prɔs.pər] 'prosperous').
- Monosyllabic stems: deletion is more frequent, about half the time (['sa.nə] ~ ['sa] 'healthy', but ['nε.nə] ~ ['nεn] 'child'; ['kla.rə] ~ ['kla] 'clear', but ['pu.rə] ~ ['pur] 'pure').
- Frequent suffixes: deletion is exceptionless with -i(na) 'related to' and -dor(a) 'agentive' ([ər.ʒən'ti.nə] ~ [ər.ʒən'ti] 'Argentine', [əd.mi.nis.trə'do.rə] ~ [əd.mi.nis.trə'do] 'administrator').
- o In all **other cases**, it is *near*-exceptionless ([kə.təˈla.**n**ə] ~ [kə.təˈla] 'Catalan', [sə.ˈgu.rə] ~ [sə.ˈgu] 'safe').


## (4) /nt/ cluster simplification

- /t/ is deleted finally after /n/, as in ['san.tə] ~ ['san] 'saint'.
- Note that /nt/ cluster simplification and /n/-deletion show *counterfeeding opacity*:
  - Word-final [n] resulting from cluster simplification is never deleted (no cases like ['sant-ə] ~ \*['sa]).
- Here is an illustration using (for brevity) classical rule-based phonology:

| 'holy-m.' | 'holy-f.' | 'healthy-m.' | 'healthy-f.' |                                                                                          |
|-----------|-----------|--------------|--------------|------------------------------------------------------------------------------------------|
| /sant/    | /sant-ə/  | /san/        | /san-ə/      | URs                                                                                      |
|           |           | sa           |              | <i>Final /n/-deletion</i> : $n \rightarrow \emptyset / \underline{\hspace{1cm}}]_{word}$ |
| san       | _         | _            | _            | Cluster Simplification: $t \rightarrow \emptyset / n $ $]_{word}$                        |
| [san]     | [santə]   | [sa]         | [sanə]       | SRs                                                                                      |

# (5) $[3] \sim [tJ]$ alternation

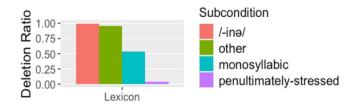
- This is a **saltatory** alternation, in the sense of Hayes & White (2015).
  - o All voiced obstruents undergo devoicing in final position (e.g. ['griz-ə] ~ ['gris] 'gray-fem./masc.').
  - But [3] devoices not to the expected [ $\int$ ] but [t $\int$ ], as in ['bɔ.3ə] ~ ['bɔt $\hat{t}$  $\hat{f}$ ] 'crazy'.
  - $\circ$  Thus [3] "saltates," jumping over intermediate [ $\int$ ] in arriving at surface [t $\int$ ]:



We can't simply turn final [∫] into [tʃ]: final [∫] is well-formed, e.g. [baʃ] 'short'.

## (6) The productivity of saltation

- Hayes & White (2015) consider saltation to be marked, and document cases of diachronic breakdown.
- White's experimental and modeling work (artificial grammar learning) suggests a learning bias against saltation (White, 2014 in adult English-speakers; White & Sundara, 2014 in 12-month-old infants).


## (7) Three theoretical issues that the work will address

- a) What productive generalizations do learners make from exceptionful data?
  - Current work suggest a two-part answer:
    - As a rough approximation (Zuraw, 2000 et seq.): when using their grammar productively, language learners *frequency-match the lexicon*.
    - But they *deviate* from frequency-matching due to UG biases (Becker et al., 2011 in Turkish; Becker et al., 2012 in English; Ernestus & Baayen, 2003 in Dutch; Hayes et al. 2009 in Hungarian).
  - Do Catalan speakers' responses for /n/-deletion and /r/-deletion differ from the lexical pattern, and if so, why?
- *b)* Can an opaque alternation be productive?
  - As shown in (4), /nt/ cluster simplification interacts opaquely with /n/-deletion.
  - Sanders (2003) argues that Polish counterbleeding opacity is not productive and is instead dealt with by memorization.
  - What of the opaque pattern in Catalan?
- c) Is the saltatory  $[\mathfrak{F}] \sim [\widehat{\mathfrak{tf}}]$  alternation of Catalan productive?
  - Do speakers commit "saltation repair?"
    - Example: [sə'ləʃ] 'wug-masc.', instead of [sə'lət͡ʃ], when given feminine [sə'ləʒ-ə].

## (8) Evaluating the lexical generalizations quantitatively: our database

- The above generalizations are carefully covered in the analytical literature, notably Mascaró (1976) and Wheeler (2005).
- We reconfirmed the patterns and assessed them quantitatively by constructing and counting a corpus of 5,761 nominal and adjectival paradigms, compiled from Wiktionary.

*Graph: rates of /n/-deletion for the four environments given above in the lexicon* 



• These data will appear in the graphs below as we compare the patterns seen in the wug test with the patterns of the lexicon.

#### **OUR WUG-TEST EXPERIMENT**

## (9) Strategy

- A classical wug test (Berko, 1958).
- We gave the participants feminine forms, and designed the task to require them to construct the corresponding masculine, thus testing the productivity of the target phonological process.
  - Experiment 1 (production task): given a feminine form, participants recorded themselves saying aloud the appropriate masculine form.
  - Experiment 2 (rating task): participants rated the acceptability of two or three potential masculine forms on a scale from 1 to 7. Choices were as in table (12) below.
  - Example: asking for the masculine of ['frun-ə] tests the productivity of
     /n/-deletion in monosyllables will they respond with (Expt. 1) or prefer (Expt. 2)
     ['fru] or ['frun]?

#### (10) Participants

- Adult, native speakers of Central Catalan who spoke Catalan at home and attended elementary school in Catalan, 37 per experiment after exclusions.
- Participated online.
- For exclusion criteria and other details, see written paper.

## (11) Materials

- We employed 100 different feminine wug forms, such as [səˈða.n-ə], for this study; any one participant saw a balanced selection of 20.
- In designing the wug forms we sought to achieve:
  - **Phonotactic acceptability** (wugs sound natural to a native speaker)
  - o Novelty (wugs and their inflected forms were not real words of Catalan)
  - Variegation (they contained a wide range of distinct consonants and vowels)

## (12) Sample wug forms

- There were 4 conditions and 10 subconditions as exemplified in the table below.
- The table entries correspond directly to the phonological phenomena and environments described earlier.
- Comment on possible outcomes for the masculine form:
  - First outcome: process applies
  - Second outcome: process does not apply

| Condition                                       | Subcondition           | Feminine form (presented to participants) | Anticipated masculine responses                      |  |
|-------------------------------------------------|------------------------|-------------------------------------------|------------------------------------------------------|--|
| /n/-deletion                                    | frequent affix /-inə/  | [bəlunˈtrin-ə]                            | [bəlun'tri], [bəlun'trin]                            |  |
|                                                 | monosyllabic           | [ˈfrun-ə]                                 | [ˈfru], [ˈfrun]                                      |  |
|                                                 | penultimately-stressed | [ˈdɔstun-ə]                               | ['dɔstu], ['dɔstun]                                  |  |
|                                                 | other                  | [gəˈmɛn-ə]                                | [gəˈmɛ], [gəˈmɛn]                                    |  |
| /r/-deletion                                    | frequent affix /-dorə/ | [gruəˈdor-ə]                              | [gruəˈdo], [gruəˈdor]                                |  |
|                                                 | monosyllabic           | [ˈlɛr-ə]                                  | [ˈlɛ], [ˈlɛr]                                        |  |
|                                                 | penultimately-stressed | [ˈsɔlir-ə]                                | [ˈsɔli], [ˈsɔlir]                                    |  |
|                                                 | other                  | [kəˈnar-ə]                                | [kəˈna], [kəˈnar]                                    |  |
| /nt/ final cluster reduction (opacity)          | _                      | [mirˈbunt-ə]                              | [mir'bun], [mirbunt],<br>[mir'bu] (feeding<br>order) |  |
| /ʒ/ final obstruent<br>devoicing<br>(saltation) | _                      | [səˈlɔʒ-ə]                                | [səˈlət͡ʃ], [səˈləʃ] (final devoicing only)          |  |

#### (13) Frame paragraphs

- The feminine wug items were first presented once in isolation, and then embedded in frame paragraphs read by a female native speaker.
- Sample paragraph:

WUG-fem.

| Una obra <u>WUG-fem</u> era una peça d'art on s'havien aplicat tècniques mixtes amb ornaments de metalls i pedres precioses. Al segle XV, un artista català va crear la primera escultura, feta de marbre, pedres precioses, i or. El primer quadre no es va crear a Espanya fins al segle XVII. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 'A work was a work of art where they applied mixed media with precious metals and stone ornaments. In the 15th century, a Catalan artist created the first sculpture, made of marble, precious stones and gold. The first painting was not created in Spain until the 17th century.'             |

- The frame paragraphs were constructed with the goal of encouraging participants to interpret the stimuli as authentic Catalan words.
- The paragraphs were recorded such that there was a pause where a response was requested.
- The grammatical context was always one which would force the use of a masculine form of the wug word to fill the pause.
- The frames were presented both in spoken form and as text. However, the wugs never appeared in written form.

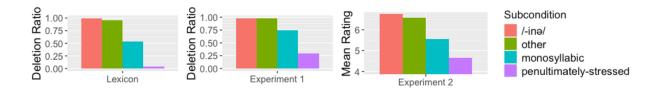
#### KEY RESULTS AND THEORETICAL INFERENCES

# (14) How we report the findings

- Expt. 1 and Expt. 2 yielded very similar results, so we report them together.
- We are not reporting statistical testing in this talk; generally, differences we report here test as significant; please ask us for the written paper to see full details.

#### (15) Cases not included in the totals here

- Didn't repeat the wug form correctly (see (13)) (6%).
- Isolated, hard-to-interpret forms, like  $[\Lambda u'da33] \rightarrow [\Lambda u'da]$  (9%).
- "Avoidant" responses (18%): use the rare masculine endings [-u] and [-ə] these let you to avoid having to make a commitment about phonology.
  - See Do (2018) for the same behaviour in Korean children.

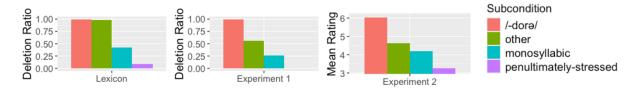

## (16) General findings

- All of the processes we investigated were productive at least to some degree.
- In detail, the findings shed light on various theoretical questions.

## (17) Frequency-matching in /n/-deletion

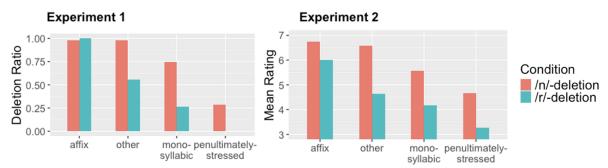
• We obtained clear evidence of frequency-matching for both experiments:

Graph: /n/-deletion in the lexicon, Experiment 1 (production), and Experiment 2 (ratings)




- Experiment 1 (production): Across four environments, the environments where /n/-deletion applies most often in the lexicon match the environments where speakers most often applied /n/-deletion: frequent affix > other > monosyllabic stems > penultimately-stressed stems.
- Experiment 2 (ratings): Same pattern (most to least acceptable).
- Not "dialect mix": although there were participants who consistently deleted and others who consistently produced /n/ or /r/, most participants provided both types of answers (ditto for all other phenomena).

#### (18) Participants also frequency-matched for /r/-deletion


 The four contexts for /r/-deletion have similar relative frequencies in the lexicon and experiments.

*Graph: /r/-deletion in the lexicon, Experiment 1 (production), and Experiment 2 (ratings)* 



#### (19) A frequency-matching puzzle: why does /n/ delete far more often than /r/?

- [n]-deletion closely matched the lexical frequencies.
- But [r]-deletion matched only in *relative* terms:
  - Speakers consistently disfavored [r]-deletion, relative to [n]-deletion.



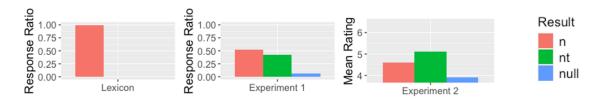
Graph: /n/- and /r/-deletion in Experiment 1 (production) and Experiment 2 (ratings)

# (20) Why the /n/ - /r/ difference? Hypothesis I: dialect variation

- Speakers of Central Catalan encounter speakers of another major dialect, Valencian, which lacks /r/-deletion.
- /n/-deletion is pan-dialectal (Wheeler, 2005).

## (21) Why the /n/ - /r/ difference? Hypothesis II: orthographic influence

- Previous work argues that phonological intuitions are often influenced by orthography (see Kawahara, 2018; Daland, Oh & Kim, 2015).
- In Catalan orthography, /n/-deletion is spelt out:
  - $\circ$  ['san- $\circ$ ]  $\sim$  ['sa] is spelt sana  $\sim$  sa
- /r/-deletion is not spelt out:
  - ['klar-ə] ~ ['kla] is spelt clara ~ clar
- Rough idea: Our participants may have been constructing appropriate orthographic representations for what they heard, preferring to pronounce these representations faithfully.
- We are exploring models that could express and incorporate this influence on participant responses.


#### (22) Contexts where /n/ deletion is *over*applied relative to the lexicon

- This occurred in both monosyllables and penultimately-stressed stems ((17) above).
- Overapplication to monosyllables is particularly interesting, in light of Becker et al.'s (2012) experimental evidence for a UG bias *against* alternation in monosyllables.
- We conjecture that here, two countering effects pair up to override this bias:
  - Simplicity bias (Moreton & Pater 2012): plain, uncontextual deletion is favored; monosyllables and penultimately-stressed forms often just follow the simplest available generalization.
  - Attestation bias (Albright & Hayes, 2003; Siah, 2024): you need enough data to take the generalization seriously; and there aren't enough cases of these two types (see Appendix for lexical counts).

## (23) /nt/ Cluster Simplification

- Despite this process being exceptionless in the lexicon, 42% of the responses in Experiment 1 had final [nt].
- Such forms were also rated higher than expected, better than forms undergoing cluster simplification.

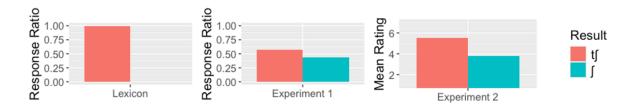
*Graph:* /nt/ cluster simplification in the lexicon, Expt. 1 (production), and Expt. 2 (ratings)



- We conjecture three possibilities:
  - Exposure to other languages or other dialects of Catalan that allow final [nt] (e.g., Wheeler, 2005:221) weakens the native-language phonotactic constraint banning final [nt].
  - Orthographic influence, as above: /nt/ cluster simplification is *not* spelt out, e.g. [san] 'saint-masc.' is spelt *sant*.
  - o Opacity repair: see immediately below.

## (24) Results for opacity (/nt/ cluster simplification and /n/-deletion)

• We examined the tokens provided for the conditions /nt/ and /n/-other (the prosodically matched subcondition) within each speaker, and found the following proportion of paired answers:<sup>1</sup>


| /n/-deletion result                                                 | /nt/ cluster simplification result | Fraction of total |
|---------------------------------------------------------------------|------------------------------------|-------------------|
| $[ga'men-a] \rightarrow [ga'me]$                                    | [mir'buntə] → [mir'bun]            | 67%               |
| $[gə'mɛn-ə] \rightarrow [gə'mɛ]$                                    | [mir'buntə] → [mir'bunt]           | 33%               |
| $[gə'mɛn-ə] \rightarrow [gə'mɛn]$                                   | [mir'buntə] → [mir'bun]            | 0%                |
| $[g \circ 'm \varepsilon n - \circ] \to [g \circ 'm \varepsilon n]$ | [mir'buntə] → [mir'bunt]           | 0%                |

<sup>&</sup>lt;sup>1</sup> Participants received two wug words for each subcondition; where their responses treated both pairs identically, we counted the data as two response patterns.

- This examination suggests that *counterfeeding opacity can be quite productive*: it is found for two thirds of the response patterns.
- Of the remaining cases, all were of the type [gə'mɛn-ə]  $\rightarrow$  [gə'mɛ], [mir'buntə]  $\rightarrow$  [mir'bunt].
  - Opacity-related? if you don't apply /nt/ deletion, the resulting output keeps /n/-deletion transparent.

## (25) The saltatory $[3] \sim [t]$ alternation

Graph: [3] ~ [tf] alternation in the lexicon, Expt. 1 (production), and Expt. 2 (ratings)



- Many speakers produced forms that repaired saltation (e.g.,  $[\Lambda u'da\mathbf{J}] \rightarrow [\Lambda u'da\mathbf{J}]$ ) and rated such forms highly.
- These saltation repairs have [ʃ], not [ʒ], because Final Devoicing remains a powerful phonotactic principle.
- Lexical basis: Forms with  $[3] \sim [\int]$  are *not attested* in the lexicon, nor in any other dialect of Catalan.
- White (2014) and Hayes & White (2015) argue that saltation is a form of "unnatural phonology," liable to repair we may be seeing such a case here.
- However, attestation bias (few saltatory forms in lexicon) may also explain these results.

#### SUMMARY OF FINDINGS

#### (26) Tentative answers to our research questions (7a-c)

- Catalan speakers generally:
  - **frequency-match the lexicon**, with deviations resulting perhaps from orthography or dialect differences.
  - o can manage opacity: Many participants gave the /nt/  $\rightarrow$  [n], /n/  $\rightarrow \emptyset$  pattern.
  - o tend to repair saltation.

#### Moltes gràcies!

#### (27) Thanks to ...

 Marta Camps, Roger Castells-Graells, Anna Gavarró, Mireia Marimón, Joan Mascaró, Jaume Mateu, Benet Oriol Sabat, Francesc Reda Coll, Gemma Repiso-Puigdelliura, Aina Soley Mateu, Mireia Toda Cosi

Catalan Wug Test

- CU Política Linguística (Generalitat de Catalunya), Institut d'Estudis Catalans, Societat Catalana de Llengua i Literatura
- Our experimental participants
- UCLA Dean of Humanities for research funding
- Members of the UCLA Phonology Seminar

# Appendix: Lexical attestation of the various phenomena in our corpus analysis (nouns and adjectives)

| Condition                                 | Subcondition           | Undergoers | Non-<br>undergoers | Total |
|-------------------------------------------|------------------------|------------|--------------------|-------|
| /n/-deletion                              | frequent affix /-inə/  | 105        | 0                  | 105   |
|                                           | monosyllabic           | 8          | 7                  | 15    |
|                                           | penultimately-stressed | 1          | 26                 | 27    |
|                                           | other                  | 390        | 20                 | 410   |
| /r/-deletion                              | frequent affix /-dorə/ | 205        | 0                  | 205   |
|                                           | monosyllabic           | 3          | 4                  | 7     |
|                                           | penultimately-stressed | 2          | 22                 | 24    |
|                                           | other                  | 250        | 6                  | 256   |
| /nt/ final cluster reduction (opacity)    | _                      | 40         | 0                  | 40    |
| /ʒ/ final obstruent devoicing (saltation) | _                      | 7          | 0                  | 72    |

#### References

Albright, Adam & Bruce Hayes. (2003). Rules vs. analogy in English past tenses: A computational/experimental study. *Cognition*, *90*(2), 119-161.

Becker, Michael, Nihan Ketrez, & Andrew Nevins. (2011). The surfeit of the stimulus: Analytic biases filter lexical statistics in Turkish laryngeal alternations. *Language*, 84-125.

Becker, Michael, Andrew Nevins, & Jonathan Levine. (2012). Asymmetries in generalizing alternations to and from initial syllables. *Language*, 88(2), 231–268.

<sup>&</sup>lt;sup>2</sup> Just 7 cases in masculine-feminine paradigms, but more in other paradigms.

- Berko, Jean (1958). The child's learning of English morphology. Word, 14(2-3), 150-177.
- Daland, Robert, Mira Oh & Syejeong Kim. (2015). When in doubt, read the instructions: Orthographic effects in loanword adaptation. *Lingua*, 159, 70-92.
- Do, Young-Ah. (2018). Paradigm uniformity bias in the learning of Korean verbal inflections. *Phonology*, *35*(4), 547–575.
- Ernestus, Miriam, & Harald R. Baayen. (2003). Predicting the Unpredictable: Interpreting Neutralized Segments in Dutch. *Language*, 79(1), 5–38.
- Hayes, Bruce, Kie Zuraw, Peter Siptar, & Zsuzsa Londe (2009). Natural and unnatural constraints in Hungarian vowel harmony. *Language* 85: 822-863.
- Hayes, Bruce & James White. (2015). Saltation and the P-map. *Phonology*, 32(2), 267–302.
- Kawahara, Shigeto. (2018). Phonology and orthography: The orthographic characterization of rendaku and Lyman's Law. *Glossa*, *3*(1).
- Mascaró, Joan. (1976). *Catalan phonology and the phonological cycle*. [Doctoral dissertation, Massachusetts Institute of Technology].
- Moreton, Elliott & Joe Pater. (2012) Structure and substance in artificial-phonology learning, part I: Structure. *Language and linguistics compass* 6:686-701.
- Sanders, Nathan (2003). *Opacity and sound change in the Polish lexicon*. [Doctoral dissertation, University of California, Santa Cruz].
- Siah, Jian-Leat. (2024). Prosodic end-weight effects in Malay echo redpublication: the role of naturalness and attestedness. [Master's thesis, University of California, Los Angeles]
- Wheeler, Max. (2005). The phonology of Catalan. Oxford University Press.
- White, James. (2014). Evidence for a learning bias against saltatory phonological alternations. *Cognition*, *130*(1), 96–115.
- White, James & Megha Sundara. (2014). Biased generalization of newly learned phonological alternations by 12-month-old infants. *Cognition*, *133*(1), 85–90.
- Zuraw, Kie. (2000). *Patterned exceptions in phonology*. [Doctoral dissertation, University of California, Los Angeles].